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The composition and structure of lignin in different tissues—phellem (cork), phloem

and xylem (wood)—of Quercus suber was studied. Whole cell walls and their

respective isolated milled lignins were analyzed by pyrolysis coupled with gas

chromatography/mass spectrometry (Py-GC/MS), two-dimensional nuclear magnetic

resonance spectroscopy (2D-NMR) and derivatization followed by reductive cleavage

(DFRC). Different tissues presented varied p-hydroxyphenyl:guaiacyl:syringyl (H:G:S)

lignin compositions. Whereas lignin from cork has a G-rich lignin (H:G:S molar ratio

2:85:13), lignin from phloem presents more S-units (H:G:S molar ratio of 1:58:41) and

lignin from xylem is slightly enriched in S-lignin (H:G:S molar ratio 1:45:55). These

differences were reflected in the relative abundances of the different interunit linkages.

Alkyl-aryl ethers (β–O–4′) were predominant, increasing from 68% in cork, to 71%

in phloem and 77% in xylem, as consequence of the enrichment in S-lignin units.

Cork lignin was enriched in condensed structures such as phenylcoumarans (β-5′,

20%), dibenzodioxocins (5–5′, 5%), as corresponds to a lignin enriched in G-units. In

comparison, lignin from phloem and xylem presented lower levels of condensed linkages.

The lignin from cork was highly acetylated at the γ-OH of the side-chain (48% lignin

acetylation), predominantly over G-units; while the lignins from phloem and xylem were

barely acetylated and this occurred mainly over S-units. These results are a first time

overview of the lignin structure in xylem, phloem (generated by cambium), and in cork

(generated by phellogen), in agreement with literature that reports that lignin biosynthesis

is flexible and cell specific.
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INTRODUCTION

Lignin is the second most abundant polymer in vascular plants. Lignin deposition in the cell wall
has a major importance for plant physiology and development: (i) by acting as the mechanical
support of plant organs, it allows an upright growth and large sizes; (ii) it provides strength and
rigidity to the cells; (iii) it allows transport of water and solutes in the vascular system due to its
hydrophobicity and mechanical resistance; and (iv) it is associated to protection against pathogens
(Boudet, 2000; Donaldson, 2001; Boerjan et al., 2003; Vanholme et al., 2008).
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Revealing the lignin structure and the lignificationmechanism
has been the subject of extensive research along the years. It
has been well established that lignin is synthesized from
the combinatorial oxidative coupling of three main p-
hydroxycinnamyl alcohol monomers (p-coumaryl, coniferyl,
and sinapyl alcohols) and related compounds (Boerjan et al.,
2003; Ralph et al., 2004a; Vanholme et al., 2010). In the last
decade other monomers have been recognized as participating
in lignin polymerization, including hydroxycinnamic acids and
aldehydes, as well as coniferyl and sinapyl acetates or coumarates
(e.g., Ralph et al., 2004a; Grabber et al., 2010; Ralph, 2010). After
their synthesis, the lignin monomers are transported to the cell
wall where they are polymerized in a combinatorial fashion by
free-radical coupling mechanisms in a reaction mediated by
peroxidases, generating a variety of structures within the lignin
polymer (Boerjan et al., 2003; Ralph et al., 2004a). The relative
proportion of lignin monomers varies between plants and
changes depending on the tissue, cell location or environmental
conditions. The lignin molecule has a high chemical flexibility,
i.e., the plant produces a lignin with a specific composition
depending on the precursors that are been deposited in the
lignifying zone (Boudet, 2000).

The composition and structural characteristics of the lignin
have been studied in different plant tissues, including wood
xylems, triggered by the importance of wood delignification
for the pulp industry (Tsutsumi et al., 1995; Rencoret et al.,
2008; Santos et al., 2011; Lourenço et al., 2013), and also in
herbaceous plants (del Río et al., 2007a, 2012a,b; Buranov and
Mazza, 2008; Marques et al., 2010). The content and composition
of lignins vary among taxa, cell types, and individual cell-
wall layers, and also with environmental conditions or plant
growth stage (Ralph and Hatfield, 1991; Buranov and Mazza,
2008; Rencoret et al., 2008). It has become evident that lignin
formation and composition is cell specific, e.g., differing between
tracheary elements, sclerenchyma cells and endodermal cells, and
presenting also a distinctive feature at sub-cellular localization
(Barros et al., 2015). For instance, the cell walls of xylem vessels
have a predominance of H-units and cell corners and middle
lamella present a G-lignin, while the cell wall of fibers is rich in
S-units (Schuetz et al., 2013).

The structure of the lignin in barks is much less known,
and only few studies exist on comparative lignin composition
of xylem and bark of the same species, such as in Tectona
grandis (Lourenço et al., 2015) and Pinus sylvestris (Normark
et al., 2014). The fact that bark is a heterogeneous material
including phloem, periderm, and eventually rhytidome, which
have different biological origin, adds to the complexity; phloem
and xylem cells result from the meristematic activity of cambium,
while the periderm originates from the activity of phellogen that
forms a thin layer of phelloderm cells to the inside and phellem
(cork) cells to the outside (Esau, 1960).

The comparative analysis of lignin composition and structure
in different tissues i.e., xylem, phloem, and periderm, of the same
species has not been reported so far. An interesting case of study
is the cork oak (Quercus suber), where the periderm forms a
thick layer of phellem that is now the source of commercial cork
(Pereira, 2007). The cork tissues are homogeneous as regards

their cell type structure and are chemically out-singled by the
presence of suberin as the major structural cell wall component
(Pereira et al., 1987; Pereira, 1988, 2013; Conde et al., 1998).
Lignin is the second most important component of cork cell
walls, and, together with suberin, contributes decisively to cork
properties e.g. elasticity and resilience (Pereira, 2015). Previous
studies of cork lignin from different species, including Q. suber,
Q. cerris, Betula pendula and Pseudotsuga menziesii (Marques
et al., 1994, 1996, 1999, 2006, 2015; Marques and Pereira, 2013),
revealed that its composition was quite different to that from
xylem lignin (Marques and Pereira, 2014).

In this context, the aim of this work is to study the differences
in composition and structure of the lignins from three tissues—
xylem, phloem and phellem—of Q. suber. For this, the milled
lignins (ML) were isolated according to the classical Björkman
procedure (Björkman, 1956) and analyzed by the use of an
array of analytical techniques, including analytical pyrolysis,
2D-nuclear magnetic resonance spectroscopy (2D-NMR), and
derivatization followed by reductive cleavage (DFRC). The results
provide a first time overview of the differences in the lignin
structure in the xylem and phloem tissues originating from the
vascular cambium, and in the cork generated by the phellogen.

MATERIALS AND METHODS

Samples
Quercus suber L. samples were taken from a 6-year-old tree
from discs taken between 1.0 and 1.3m of stem height. The
xylem, phloem and cork tissues were manually separated from
each other using a chisel. Each material was milled in a knife
mill (Retsch SM 2000), passing through a 6 × 6 mm sieve, and
sieved in a Retsch AS 200. One sample was taken from the 40–
60 mesh fraction (250–425 µm) for chemical analysis. A mixture
of all the granulometric fractions was successively extracted with
dichloromethane, ethanol and water for 24 h each. The extracted
samples were oven-dried at 60◦C, and milled in a knife mill (IKA
MF10) passing through a 100-mesh (<180 µm) sieve to obtain a
fine granulate for lignin isolation.

Chemical Analysis
Two aliquot samples from the 40–60 mesh fraction (250–
425 µm) from cork, phloem and xylem were chemically
characterized, following procedures adapted from TAPPI
standard methods (TAPPI, 2004): ash content (TAPPI T211
om-02), total extractives determined from successive Soxhlet
extraction with dichloromethane, ethanol and water (TAPPI
T204 cm-07), total lignin determined as the sum of Klason
lignin (TAPPI T222 om-11) and acid-soluble lignin (UM 205
om-83). Neutral monosaccharide composition was determined
in the hydrolysate from the lignin analysis. The monosaccharides
were separated by High Pressure Ion Chromatography using
a Dionex ICS-3000 system equipped with an electrochemical
detector; the mobile phase was NaOH (2mM solution) with a
flux of 1.0 mL/min at 25◦C; and the column used was Aminotrap
plus Carbopac SA10. The results were reported as percent of
initial material. In the case of cork, the suberin content was
determined in the extractive-free material by methanolysis, as
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FIGURE 1 | Cross-sectional image of a Quercus suber stem disc presenting cork, phloem, and xylem (scale bar = 1 cm), and transverse microscopic

sections of cork, phloem, and xylem tissues (scale bar = 100 µm). scl, clusters of sclereids; f, fibers; v, vessel; r, rays; p, parenchyma.

TABLE 1 | Chemical composition of the 40–60 mesh from cork, phloem

and xylem of Quercus suber L. Mean values of two samples.

(% oven dry material) Cork Phloem Xylem

Ash 0.7 3.1 1.5

Total extractives 10.4 6.2 8.4

Dichloromethane 4.1 0.1 0.6

Ethanol 2.9 1.9 2.8

Water 3.4 4.2 5.0

Total lignin 27.1 38.4 23.6

Klason lignin 26.2 36.0 20.6

Soluble lignin 0.9 2.4 3.0

Suberin 30.1 – –

MONOSACCHARIDES

Arabinose 2.0 0.9 0.6

Xylose 6.4 15.5 13.7

Mannose 0.4 0.1 0.6

Galactose 1.1 0.8 1.1

Glucose 9.0 16.5 28.7

described in Pereira (2013), and the lignin was determined using
the suberin-free material (according to TAPPI T222 om-11).

Anatomical Observation
A sample of each tissue was impregnated with DP1500
polyethylene glycol, and transverse microscopic sections of

approximately 17µm thickness were cut with amicrotome (Leica
SM 2400). The cork and phloem sections were stained with
triple staining astra blue/crysoidine/sudan IV, and the xylem
sections with safranin. All the sections were observed in a light
microscopic using Leica DM LA and photomicrographs were
taken with a Nikon Microphot-FXA.

Lignin Isolation
Milled lignins from xylem, phloem and cork were isolated
according to a procedure adapted from Björkman (1956). The
granulates were finely ball-milled using a 500 mL agate jar and
agate ball bearings (20× 20mm) in a Retsch PM100 planetarium
ball mill, at 400 rpm, during 5 h with 5 min breaks after every
5 min of milling. The ball-milled powder was extracted with
dioxane-water (96:4, v/v) using 25 mL of solvent g−1 of sample
under agitation for 12 h. The solution was centrifuged, and the
supernatant evaporated to dryness at 40◦C at reduced pressure.
The residue, called rawmilled lignin (rawML) was dissolved into
a solution of acetic acid:water (9:1, v/v) using 20 mL of solvent
g−1 of raw ML. The lignin was precipitated into stirred cold
water (225mL g−1 of raw ML), the precipitate was centrifuged,
dried and milled in an agate mortar. This residue was dissolved
in a 1,2-dichloroethane:ethanol solution (2:1, v/v) using 25 mL
of solvent/g of lignin. After centrifugation to remove undissolved
matter, the lignin in the supernatant was precipitated by adding
the solution drop wise into diethyl ether, and the obtained residue
was separated by centrifugation. The solid residue was suspended
in diethyl ether overnight, centrifuged, and finally suspended

Frontiers in Plant Science | www.frontiersin.org 3 October 2016 | Volume 7 | Article 1612

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Lourenço et al. Lignin Differs between Tissues

in petroleum ether overnight. The final purified milled lignin
was recovered by centrifugation and dried under N2 flow. The
final yields ranged from 15 to 20% based on the Klason lignin
content.

Analytical Pyrolysis (Py-GC/MS)
The milled lignins (1.7 mg) were pyrolysed in a EGA/Py-3030D
micro-furnace pyrolyzer (Frontier Laboratories Ldt.), connected
to an Agilent 7820A GC system equipped with a DB-1701 fused-
silica capillary column (60m × 0.25 mm i.d. × 0.25 µm film
thickness), and to a Agilent 5975Mass detector (EI at 70 eV). The
pyrolysis was performed at 500◦C (1 min). The oven temperature
was programmed from 45◦C (4 min) to 280◦C at a heating
rate of 4◦C min−1, and held at 280◦C during 10 min. The
GC/MS interface was kept at 280◦C and the injector at 250◦C.
The carrier gas was Helium with a flow of 2 mL min−1. The
compounds were identified using the literature (Faix et al., 1990;
Ralph and Hatfield, 1991) and the Wiley and NIST libraries.
Peak molar areas were calculated for each compound (by
dividing the peak area by the respective molecular weights), the
summed molar areas were normalized and the data expressed as
percentage.

2D-NMR Spectroscopy
Around 100mg of the whole cell wall (CW) material and
30mg of the isolated milled lignins were dissolved in 1
mL and 0.75 mL of DMSO-d6, respectively, for the NMR
analysis. HSQC (heteronuclear single quantum correlation)
spectra were recorded at 300K on a Bruker AVANCE III 500
MHz spectrometer (Bruker Biospin, Fallanden, Switzerland),
equipped with a cryogenically cooled 5 mm TCI gradient probe
with inverse geometry (proton coils closest to the sample).
The 2D 13C-1H correlation spectra were obtained using an
adiabatic HSQC pulse program (Bruker standard pulse sequence
“hsqcetgpsisp2.2”). The spectral widths were from 10 to 0 ppm
(5000Hz) in F2 for 1H dimension, with an acquisition time of
100 ms (CW) or 145 ms (ML), and a recycle delay (d1) of 1 s.
For the 13C dimension, the spectral width was from 200 to 0 ppm
(25,168Hz) in F1, being collected 256 increments of 32 scans for
a total acquisition time of 2 h 34min (CW) and 2 h 40min (ML).
The 1JCH used was 145 Hz. Processing used typical matched
Gaussian apodization in 1H and a squared cosine bell in 13C.
The central solvent peak was used as an internal reference (δC
39.5; δH 2.49 ppm). 2D NMR HSQC cross-signals were assigned
after comparison with data from literature (Ralph et al., 1999,
2004b; Capanema et al., 2005; Rencoret et al., 2011; del Río et al.,
2012a,b). A semiquantitative analysis of the volume integrals
of the HSQC correlation peaks was performed using Bruker’s
Topspin 3.1 processing software. The relative abundances of side-
chains involved in the different inter-unit linkages were estimated
in the aliphatic oxygenated region from the Cα–Hα correlations,
except for α-oxidized β−O−4 substructures (Aox) and cinnamyl
alcohol end-groups (structure I, Figure 5), for which Cβ–Hβ

and Cγ–Hγ correlations were used. In the aromatic/unsaturated
region, C2–H2 correlations from H, G and S lignin units
and from ferulates were used to estimate their relative
abundances.

Derivatization Followed by Reductive
Cleavage Method Modified (DFRC′)
To evaluate the incorporation of acetylated monolignols into
the lignin of the three materials, resulting in γ-acetylated
lignin side-chains, a modification of the standard DFRC
method was used (Ralph and Lu, 1998). Milled lignins (5
mg) were stirred for 2 h at 50◦C with propionyl bromide in
propionic acid (8:92, v/v). The solvents and excess bromide were
removed by rotary evaporation. The products were dissolved in
dioxane/propionic acid/water (5:4:1, v/v/v), and 50mg powdered
Zn were added. The mixture was maintained for 40 min at room
temperature with stirring, and transferred into a separator funnel
with dichloromethane and saturated ammonium chloride. The
aqueous phase was adjusted to pH < 3 by adding 3% HCl, the
mixture was vigorously mixed and the organic layer separated.
The water phase was extracted twice with dichloromethane. The
combined dichloromethane fractions were dried over anhydrous
NaSO4 and the filtrate was evaporated to dryness using a
rotary evaporator. The residue was propionylated for 1 h in
1.1 mL of dichloromethane containing 0.2 mL of propionic
anhydride and 0.2mL pyridine. The propionylated (and naturally
acetylated) lignin degradation compounds were collected after
rotary evaporation of the solvents, and subsequently analyzed by
GC/MS. The GC analyses were performed with a GCMS-QP2010
Ultra instrument (Shimadzu Co.) using a capillary column (DB-
5HT, 30m × 0.25 mm I.D., 0.10 µm film thickness). The oven
was heated from 140◦C (1 min) to 250◦C at 3◦C min−1, then
ramped at 10◦C min−1 to 300◦C and held for 10 min at the final
temperature. The injector was set at 250◦C and the transfer line
was kept at 300◦C. Helium was used as the carrier gas at a rate of
1 mL min−1.

RESULTS

Anatomy and Chemical Composition
The location of the three tissues (cork, phloem and xylem) in the
plant stem and their anatomical structure are shown in Figure 1.
While cork is a homogeneous tissue of phellem cells, the phloem
presents sieve elements, parenchyma, and sclerenchyma cells
with sclereids, and the xylem has rays and axial parenchyma,
vessels and fibers. The chemical summative composition of the
xylem, phloem and cork tissues was determined in the 40–
60 mesh fraction and the results are presented in Table 1.
The different tissues presented great differences in composition,
with cork having suberin as the major structural component.
The lignin content also differed among the different tissues,
accounting for 27.1% in cork, 38.4% in phloem and 23.6% in
xylem.

Lignin Composition As Determined by
Py-GC/MS
The composition of the lignins from the different tissues
was first addressed by Py-GC/MS. The pyrograms of the ML
preparations isolated from cork, phloem and xylem are presented
in Figure 2. The identities and relative molar abundances of
the released lignin-derived phenolic compounds are listed in
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FIGURE 2 | Py-GC/MS chromatograms of the milled lignin preparations isolated from the different parts of Q. suber (A) cork, (B) phloem, and (C)

xylem. The identities and relative abundances of the released lignin-derived compounds are listed in Table 2.
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Table 2. The pyrograms revealed strong differences in lignin
composition among the three tissues. Pyrolysis of cork lignin
released predominantly phenolic compounds derived from G-
lignin units, with guaiacol (compound 1, Table 2, Figure 2),
4-methylguaiacol (2) and 4-vinylguaiacol (4) as the major
compounds released, with only few amounts of S-lignin units,
and presenting a strikingly low S/G ratio of 0.10. The pyrograms
of the lignins isolated from phloem and xylem released more S-
lignin units, particularly syringol (7) and 4-methylsyringol (10),
and which were more abundant in the xylem. These differences
are reflected in their higher S/G molar ratio, accounting for 0.62
in phloem lignin and 1.66 in xylem lignin.

Lignin Structural Units and Inter-Unit
Linkages Analyzed by 2D-NMR
The whole cell-walls of cork, phloem and xylem were analyzed
by 2D HSQC NMR (Figure 3) and the spectra compared with
those of their isolated lignins (Figure 4). The main lignin cross-
signals assigned in the spectra are listed in Table 3, and the
main lignin substructures found are represented in Figure 5.
The spectra of the whole cell-walls (Figure 3) presented signals
from carbohydrates, including xylan correlations in the range
δC/δH 60–85/2.5–5.5 (for X2, X3, X4, and X5) and signals from
acetylated xylan moieties (X′

2 and X′
3) as well as signals from

lignin, whereas the spectra of the isolated lignins (Figure 4)
presented only signals from lignin. In general terms the signals
of isolated lignins match those observed in the whole cell-
walls, indicating that the MWL preparations used for the
present work are representative of the native lignins in the
cell-walls.

The aliphatic-oxygenated region of the spectra (around δC/δH
50−90/2.5−6.0, Figures 3A–C, 4A–C) gives information on the
inter-unit linkages in lignin. In this region, cross-signals from
methoxyl groups and from β−O−4′ alkyl-aryl ethers (structure
A) are predominant in all samples, although differing in their
intensities. Signals from other lignin substructures were also
detected in the HSQC spectra, although with lower intensities,
including signals from phenylcoumarans (B), resinols (C),
dibenzodioxocins (D), open β-1 structures (E), spirodienones
(F), and cinnamyl alcohol end-groups (I). This region of the
spectrum can also provide information on the acylation degree
in lignin. The HSQC spectrum of cork lignin (Figure 4A)
clearly showed the occurrence of intense signals in the range
from δC/δH 63.5/3.83-4.30 and at 64.3/4.63, that correspond
to the Cγ-Hγ correlations of γ-acylated β−O−4′ alkyl-aryl
ethers units (structures A′) and γ-acylated cinnamyl alcohol
end-groups (I′). This indicates that cork lignin is partially
acylated at the γ-position of the lignin side-chain. The estimation
of the γ-acylation was accomplished by integration of the
signals corresponding to the Cγ-Hγ correlations of the γ-
hydroxylated (A) vs. γ-acylated (A′) structures, and indicated
a 48% acylation degree of the lignin side-chains in cork. The
HSQC spectra of the whole cell-walls of cork (Figures 3A,D)
and their isolated ML (Figures 4A,D) showed the presence of a
signal at δC/δH 80.7/4.51 characteristic for the Cβ-Hβ correlations
of γ-acylated β−O−4′ substructures (A′) linked to G-units (del

TABLE 2 | Identities and relative molar abundances (% of identified

products) of the lignin-derived compounds from pyrolysis of milled lignins

of cork, phloem and xylem of Quercus suber L. Peak assignment from

Figure 2.

Peak Compound Origin Cork Phloem Xylem

1 guaiacol G 21.3 13.1 7.3

2 4-methylguaiacol G 26.7 15.8 10.0

3 4-ethylguaiacol G 9.7 5.6 2.8

4 4-vinylguaiacol G 14.1 11.6 4.5

5 eugenol G 1.3 1.0 1.4

6 4-propylguiacol G 1.9 1.5 1.4

7 syringol S 3.1 12.3 14.0

8 cis-isoeugenol G 1.3 1.4 1.4

9 trans-isoeugenol G 7.2 5.9 5.1

10 4-methylsyringol S 2.9 8.9 15.9

11 vanillin G 3.2 2.6 2.4

12 4-ethylsyringol S 1.3 2.2 4.4

13 acetovanillone G 2.4 2.3 1.3

14 4-vinylsyringol S 1.1 3.5 3.8

15 4-propylsyringol S 0.0 0.5 2.9

16 guaiacylacetone G 1.7 0.9 0.0

17 4-allylsyringol S 0.1 0.8 2.9

18 cis-4-propenylsyringol S 0.2 1.0 1.6

19 trans-propenylsyringol S 0.6 3.7 5.8

20 syringaldehyde S 0.0 1.6 4.9

21 homosyringaldehyde S 0.0 0.2 0.6

22 acetosyringone S 0.0 1.7 2.6

23 syringylacetone S 0.0 0.7 1.1

24 propiosyringone S 0.0 0.5 0.8

25 -sinapaldehyde S 0.0 0.5 1.1

S/G molar ratio 0.10 0.62 1.66

G, Guaiacyl derived units; S, Syringyl derived units. Mean values of two samples.

Río et al., 2012a,b, 2015), indicating a significant degree of
γ-acylation of G-lignin units in the cork lignin. Signals from
acylated lignin were not observed in the spectra of phloem
(Figures 4B,E) and xylem (Figures 4C,F), indicating that these
lignins are not acylated, or only to a very low extent. The
aromatic region of the spectra (around δC/δH 100−155/6.0−8.0,
Figures 3D–F, 4D–F) shows the signals from the aromatic rings
and unsaturated side-chains of the different H-, G-, and S-
lignin units, as well as from ferulates (structure FA). Signals
from cinnamyl alcohol (I) and cinnamyl aldehyde end-groups
(J) are also present in this region of the spectra. The content in
cinnamaldehyde end-groups was estimated after comparing the
intensities of Cβ-Hβ correlations in cinnamyl alcohols (I) and
aldehydes (J).

The relative abundances of the main lignin inter-unit linkages
and end-groups, as well as the percentage of γ-acylation, the
molar abundances of the different lignin units (H, G, and S) and
ferulates, and the S/G ratios of the lignins in the cork, phloem
and xylem of Q. suber, estimated from volume integration of
contours in the HSQC spectra, are shown in Table 4. Important
differences were observed in the composition and structure of the
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FIGURE 3 | Side-chain (δC/δH 50–90/2.5–6.0) and aromatic/unsaturated (δC/δH 100–155/6.0–8.0) regions in the 2D HSQC NMR spectra of the whole

cell-walls from the different parts of Q. suber (A,D) cork, (B,E) phloem and (C,F) xylem. The signal assignments are presented in Table 3 and the main lignin

structures identified are depicted in Figure 5.

lignins from the three tissues. The lignin from cork is enriched
in G-units, with a H:G:S molar composition of 2:85:13, whereas
the lignin from phloem has less G-units (H:G:S of 1:58:41),
and the lignin from xylem is enriched in S-units (H:G:S of
1:45:55). The S/G ratios estimated by 2D-NMR were 0.1 in
cork, 0.7 in phloem, and 1.6 and 1.2 in xylem (respectively
in cell walls and isolated lignin). These values match quite
closely those determined by Py-GC/MS, as reported above. These
compositional differences were also reflected in the relative
abundances of the different inter-unit linkages. β−O−4′ alkyl-
aryl ethers are themost predominant linkages in the three lignins,
but their relative abundances increase from 68% in cork, to 71%
in phloem and to 77% in xylem, consistent with the enrichment
in S-lignin units. Cork lignin is enriched in condensed linkages

such as phenylcoumarans (20%), dibenzodioxocins (5%) and
resinols (4%). On the opposite, phloem and xylem present a
lignin with less phenylcoumarans (13 and 9% respectively),
dibenzodioxocins (2 and 1%) but more resinols (7 and 8%) and
a small amount of open β−1 structures (2 and 1%). Signals
from cinnamyl alcohol (I) and cinnamaldehyde end-groups
(J) were also observed, particularly in cork lignin, which is
enriched in end-groups (5% of acylated cinnamyl alcohol, 8%
of cinnamyl alcohol and 11% of cinnamaldehyde). These end-
groups are also present, although in lower amounts, in the
lignins from phloem and xylem. Finally, Table 4 shows the high
extent of γ-acylation of the cork lignin (48%) that contrasts
with the absence of lignin acylation in phloem and xylem
tissues.
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FIGURE 4 | Side-chain (δC/δH 50–90/2.5–6.0) and aromatic/unsaturated (δC/δH 100–155/6.0–8.0) regions in the 2D HSQC NMR spectra of the milled

lignin preparations isolated from the different parts of Q. suber (A,D) cork, (B,E) phloem, and (C,F) xylem. The signal assignments are presented in Table 3

and the main lignin structures identified are depicted in Figure 5.

Evaluation of Acylation Groups by DFRC′

Analysis
As mentioned before, cork lignin is partially acylated at the
γ-position of the side-chain (48% of the units), while the
lignins in phloem and xylem were not acylated. However, the
nature of the acylating group could not be assessed by HSQC.
Information regarding the nature of the acylation of the γ-OH
was obtained from DFRC, a degradation method that cleaves
α- and β-ether linkages in the lignin polymer leaving γ-esters

intact and therefore is appropriate for analysis of γ-acylated
lignins (Lu and Ralph, 1997a,b, 1998). The method was slightly
modified (so called DFRC′) by replacing acetylating reagents with
propionylating ones in order to evaluate the presence of acetate
groups originally acylating the lignin γ-OH (Ralph and Lu, 1998;
del Río et al., 2007b).

The GC-MS chromatograms of the DFRC′ degradation
products of the lignins isolated from cork, phloem and xylem
are presented in Figure 6. The compounds released were the
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cis- and trans- isomers of guaiacyl (cG, tG) and syringyl
(cS, tS) lignin monomers (as their propionylated derivatives)
arising from normal γ-OH units in lignin. In addition, the
presence of originally γ-acetylated guaiacyl (cGac and tGac) and
syringyl lignin units (cSac and tSac) were also detected in the
chromatograms, confirming that acetylation at the γ-OH of the
side-chain occurred in these lignins, being particularly abundant
in cork lignin, and, to a much lower extent, also in phloem and
xylem lignins. In cork lignin, acetylation occurred predominantly
over the guaiacyl units (28% of the total G units are acetylated),
as already advanced by 2D-NMR, whereas only minor amounts
of syringyl units were acetylated (4% of the S-units). In contrast,
the lignins from phloem and xylem were acetylated only to a very
minor extent (not observed by 2D-NMR) and predominantly
over S-units.

DISCUSSION

The chemical composition of cork and xylem (Table 1) is in
general agreement with the values reported in the literature for
Q. suber cork (Pereira, 1988, 2013; Jové et al., 2011) and wood
(Leal et al., 2005). However, there are no studies reporting the
chemical composition of Q. suber phloem, although a previous
study comparing the chemical composition of reproduction cork
and its phloemic outside layer (i.e. the outer phloem external
to the formation of the traumatic phellogen) reported a similar
compositional difference, with a higher lignin content for the
outer phloem (32.5%) than for the cork (23.0%) (Pereira, 1987).
For other species in which phloem and cork have been analyzed
(e.g., P. menziesii and Q. cerris), the lignin content was also
considerably higher in phloem than in cork (Sen et al., 2010;
Ferreira et al., 2014). Our data is therefore in agreement with
previous reports and indicate a higher lignin content in phloem
with respect to cork and xylem tissues. The high lignification of
phloem is associated to the conspicuous presence of thick-walled
and heavily lignified fibers and sclereids, as Figure 1 clearly
exemplifies.

The composition of the lignin in the three tissues presented
great differences. Whereas cork lignin is enriched in G-units
(S/G of 0.1), the lignin from phloem has less G- and more
S-units (S/G of 0.7) and the lignin from xylem is enriched
in S-units (S/G of 1.2). The H:G:S composition of the three
lignins therefore indicates a continuous decrease in the content
of H- and G-units and an enrichment in S-units from the
cork to phloem to xylem. The strong predominance of G-units
present in the lignin from Q. suber cork and in the lignin
from the corks of other species (such as B. pendula and Q.
cerris) has already been reported (Marques et al., 1994, 1996,
2006; Marques and Pereira, 2013). There is no report in the
bibliography on the monomeric composition of phloem-only
lignin. However the S/G ratio for the bark of T. grandis that is
mostly constituted by phloem i.e., with a very small proportion
of cork, presented a very similar value of 0.8 (Lourenço et al.,
2015). As regards to the xylem, there is no data for Q. suber,
but for Q. robur the S/G ratio was found 1.9 (Karami et al.,
2013).

TABLE 3 | Assignments of the lignin 13C–1H correlation peaks in the

2D-HSQC spectra of whole cell walls and of the corresponding isolated

milled lignins from cork, phloem and xylem of Quercus suber L.

Label δC/δH Assignment

Bβ 53.1/3.43 Cβ–Hβ in phenylcoumaran substructures (B)

Cβ 53.5/3.05 Cβ–Hβ in β–β′ resinol substructures (C)

−OCH3 55.6/3.73 C−H in methoxyls

Aγ 59.4/3.40 and 3.72 Cγ–Hγ in β–O–4′ substructures (A)

Dβ 59.5/2.75 Cβ–Hβ in in 5-5′ (dibenzodioxocin)

substructures (D)

Iγ 61.3/4.08 Cγ–Hγ in cinnamyl alcohol end-groups (I)

Bγ 62.6/3.67 Cγ–Hγ in phenylcoumaran substructures (B)

A′γ 63.5/3.83 and 4.30 Cγ–Hγ in γ-acylated β–O–4′ substructures (A′)

I′γ 64.3/4.63 Cγ–Hγ in γ-acetylated cinnamyl alcohol

end-groups (I′ )

Cγ 71.0/3.83 and 4.19 Cγ–Hγ in β–β′ resinol substructures (C)

Aα(G) 71.0/4.73 Cα–Hα in β–O–4′ substructures (A) linked to a

G-unit

Aα(S) 71.7/4.83 Cα–Hα in β–O–4′ substructures (A) linked to a

G-unit

Fβ′ 79.4/4.10 Cβ′–Hβ′ in spirodienone substructures (F)

A′
β(G)

80.7/4.51 Cβ–Hβ in γ-acetylated β–O–4′ substructures

linked to a G-unit (A′)

Fα 81.2/5.01 Cα–Hα in spirodienone substructures (F)

Dα 83.0/4.82 Cα-Hα in 5-5′ (dibenzodioxocin)

substructures (D)

Fα′ 83.6/4.68 Cα′–Hα′ in spirodienone substructures (F)

Aβ(G) 83.7/4.26 Cβ–Hβ in β–O–4′ substructures (A) linked to a G

unit

Cα 84.7/4.64 Cα–Hα in β–β′ resinol substructures (C)

Dβ 85.2/3.85 Cβ-Hβ in 5-5′ (dibenzodioxocin)

substructures (D)

Aβ(S) 85.8/4.09 Cβ–Hβ in β–O–4′ substructures linked (A) to a S

unit

Bα 86.8/5.43 Cα–Hα in phenylcoumaran substructures (B)

S2,6 103.7/6.68 C2–H2 and C6–H6 in etherified syringyl units (S)

J2,6(S) 106.2/7.02 C2-H2 and C6-H6 in sinapaldehyde

end-groups (J)

S′2,6 106.3/7.32 and 7.20 C2-H2 and C6-H6 in Cα-oxidized syringyl

units (S′)

G2 110.8/6.96 C2–H2 in guaiacyl units (G)

FA2 111.1/7.25 C2-H2 in ferulates (FA)

J2(G) 112.5/7.30 C2–H2 in conyferaldehyde end-groups (J)

F2′ (S) 113.5/6.25 C2′–H2′ in spirodienone substructures (F)

FAβ 113.5/6.27 Cβ–Hβ in ferulates (FA)

G5/G6 115.0/6.74 C5–H5 and C6–H6 in guaiacyl units (G)

G6 118.7/6.77 C5–H5 inguaiacyl units (G)

J6(G) 118.8/7.30 C6–H6 in conyferaldehyde end-groups (J)

F6′ (S) 118.9/6.06 C6′–H6′ in spirodienone substructures (F)

FA6 123.3/7.10 C6–H6 in ferulate (FA)

Jβ 126.3/6.76 Cβ–Hβ in cinnamyl aldehyde end-groups (J)

H2,6 128.0/7.23 C2,6–H2,6 in p-hydroxyphenyl units (H)

FAα 144.4/7.41 Cα–Hα in ferulates (FA)

Jα 153.4/7.61 Cα–Hα in cinnamyl aldehyde end-groups (J)
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FIGURE 5 | Main structures present in the lignins from Q. suber cork, phloem and xylem: A, β-O-4′ alkyl-aryl ethers; Aox, α-oxidized β–O–4′ aryl ethers;

A′, β-O-4′ alkyl-aryl ethers with acylated γ-OH; B, phenylcoumarans; C, resinols; D, dibenzodioxocins; E, open β–1′ structures; F spirodienones; I,

cinnamyl alcohol end-groups ; I′, γ-acylated cinnamyl alcohol end-groups; J, cinnamaldehyde end-groups; FA, ferulate moieties; H, p-hydroxyphenyl

units; G, guaiacyl units; S, syringyl units; S′, oxidized syringyl units unit bearing a carbonyl group at Cα.

The results obtained are a striking confirmation that the
monomeric composition of lignin is different depending on
cell type and tissue (Barros et al., 2015) and that the lignin
distribution is differentially regulated depending on cell types
(Nakashima et al., 2008; Saito et al., 2012). The monomeric
composition of lignin is largely determinant to the inter-
monomeric linkages and polymer structure, which may have
implications regarding functional requirements of strength and
protection; for instance, S-lignin is less condensed i.e., fewer C-C
interunit bonds than a G-lignin.

Tracheary elements require a reinforcement of their lateral cell
walls in order to be able to withstand the negative pressure of
sap ascent; therefore, they are mainly composed of G-units; while
fibers and sclereids, that provide general mechanical strength,
have mostly S-units (Terashima and Fukushima, 1989; Higuchi,
1990). This may explain the differing monomeric composition
of xylem, phloem and cork in Q. suber: the xylem has a large
proportion of fibers (Sousa et al., 2009), and phloem a large
content of sclereids (Figure 1) and both have a higher content
of S-units, while the cork cells are the external protective layer
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TABLE 4 | Structural characteristics (lignin inter-unit linkages, end-groups, γ-acylation, aromatic units and S/G ratio, and ferulate content) from

Integration of 13C-1H correlation peaks in the HSQC Spectra of the whole cell-walls (CW) and isolated milled lignins (ML) of xylem, phloem, and cork

from Quercus suber L.

Cork CW Cork ML Phloem CW Phloem ML Xylem CW Xylem ML

LIGNIN INTER-UNIT LINKAGES (%)

β–O–4′ aryl ethers (A/A′) − 68 − 71 − 77

α-oxidized β–O–4′ aryl ethers (Aox) − 0 − 2 − 2

Phenylcoumarans (B) − 20 − 13 − 9

Resinols (C) − 4 − 7 − 8

Dibenzodioxocins (D) − 5 − 2 − 1

Open β-1 (E) − 0 − 2 − 1

Spirodienones (F) − 3 − 3 − 2

LIGNIN END-GROUPSa

Cinnamyl alcohol end-groups (I) − 8 − 2 − 1

γ-acylated cinnamyl alcohol end-groups (I′) − 5 − 0 − 0

Cinnamaldehyde end-groups (J) − 11 − 7 − 4

Lignin side-chain γ-acylation (%) − 48 − 0 − 0

LIGNIN AROMATIC UNITSb

H (%) 8* 2 1 1 0 1

G (%) 84 85 59 58 39 45

S (%) 8 13 40 41 61 55

S/G ratio 0.1 0.1 0.7 0.7 1.6 1.2

Ferulates (%)c 5 6 6 5 0 0

aExpressed as a fraction of the total lignin inter-unit linkage types A–F.
bMolar percentages (H + G + S = 100).
cFerulate molar content as percentages of total lignin content (H + G + S).

*Content of H-units are overestimated due to the occurrence of signals from proteins.

of the plant and have a G-lignin. The distribution of the
different lignin inter-unit linkages (Table 4) is closely related
to the proportion of the different lignin monomers; therefore,
the cork lignin, due to the predominance of G-units, presents
less β-O-4 aryl ethers (A/A′) and more condensed structures
such as phenylcoumarans (B) and dibenzodioxocins (D). This is
consistent with the protective function of cork toward external
stresses. In fact, protective barriers such as the Casparian strips
also have a lignin with more H- and G-units than S-units (Barros
et al., 2015).

Ferulates were present in important amounts (ca. 5%) in the
lignin from phloem and cork but were completely absent in the
lignin from xylem. Ferulic acid unitsmake the link between lignin
and carbohydrates (Ralph and Landucci, 2010) and are present
in suberized cell walls, chemically bridging suberin and lignin as
shown recently for Q. suber cork (Marques et al., 2015).

The timing of lignification is also a potential explanation
for the structural difference of cork lignin in relation to wood
and phloem lignins. Terashima et al. (1986) reported that the
deposition of lignin units in the cell wall is sequential, p-coumaryl
alcohol (H-units) are deposited first, followed by coniferyl
alcohol (G-units) and then by sinapyl alcohol (S-units). Studies
by microautoradiography and microspectroscopy also showed
that the incorporation of G-units continues throughout the early
to late stages of xylem differentiation, while the S-units are
deposited mainly during the middle and late stages (Terashima
et al., 1986; Fukushima and Terashima, 1991; Rencoret et al.,
2011). A study conducted in the cambial zone of poplar during a

growth season showed that the cells hadmore G-units in the early
stages of differentiation, and also that phloem cells had more G-
units comparatively to wood cells (Christiernin, 2006). Therefore,
a more rapid lignin deposition in the cell wall will lead to more
G-units and amore condensed structure. In the case of cambium-
derived cells, such as tracheary elements and sclerenchyma cells,
lignification occurs in the final stages of cell differentiation
during wall thickening and proceeds in sequential phases after
deposition of polysaccharides (Donaldson, 2001). This explains
why different cells have different lignin composition; since the
vessel walls lignify earlier than fiber walls, they contain mainly G-
units while fibers contain less G- and more S-units. In the case of
cork, the process of cell wall thickening with suberin deposition
is very quick in the cells neighboring the phellogen mother-cell
and the process spans only to a few cells (Teixeira and Pereira,
2009). With 14C-labeling of young cork oaks, it was found that
suberin was a highly effective sink for the carbon assimilated with
a fast synthesis (Aguado et al., 2012). The anatomical features of
the cork cells e.g., leading to the cell wall corrugations shown by
the radial cell walls are also indicative of a very rapid lignification
process (Pereira, 2015). This explains the enrichment in G-lignin
units of cork cells.

On the other hand, our data indicate that the lignin from
cork was highly acylated at the γ-OH with acetate groups, and
that acetylation occurred predominantly over the G-units. This
finding is quite remarkable since in most plants γ-acetylation
occurs predominantly on S-units, where sinapyl acetate acts as a
real monolignols and is involved in coupling and cross-coupling
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reactions during lignification (Ralph, 1996; Lu and Ralph, 2002;
del Río et al., 2007b, 2008). This fact seems to indicate that
coniferyl acetate also acts as a real monolignol in the biosynthesis
of cork lignin and points to the occurrence of the corresponding
acetyl transferases with a higher affinity toward coniferyl alcohol
than toward sinapyl alcohol. Acylation could not be observed
in the lignins from phloem and xylem by 2D-NMR, but DFRC′

analyses indicated that these lignins are also acetylated, although
at a low level, and preferentially over S-units, as it has been
reported in other plants (Ralph, 1996; Lu and Ralph, 2002;
del Río et al., 2007b, 2008). The role of the high extent
of lignin acetylation of cork lignin, compared to the minor
acetylation degree of the lignins in phloem and xylem, is not yet
known. However, since the resultant acetylated lignin is more
hydrophobic than normal lignin, lignin acetylation will increase
the hydrophobicity of the cork tissues thus helping to reduce
water loss in the plant.

The reasons underlying the differences that were found in
the lignin composition and structure in the cells produced by
the cambium (xylem and phloem) and in the cells produced by
the phellogen (cork) may only be speculatively discussed. This
is certainly a subject where more focused studies have to be
made in order to understand the compositional differences of
lignin in the different tissues and cells. In any case, it is apparent
that the mechanism of lignin biosynthesis confers the plant a
high flexibility to produce different types of lignins for different
tissues.

CONCLUSIONS

This study reports the differences in composition and structure
of the lignins from different tissues—cork (phellem), phloem
and xylem (wood)—of Q. suber. The whole cell walls and
their isolated milled lignins were thoroughly characterized
by using different analytical methodologies (Py-GC/MS, NMR
and DFRC′). The data revealed important differences in the
composition and structure of the lignins among the three
tissues. Cork lignin was predominantly a G-lignin (H:G:S molar
ratio of 2:85:13), enriched in condensed structures such as
phenylcoumarans (20%) and dibenzodioxocins (5%). In contrast,
phloem has less G- and more S-units (H:G:S molar ratio of
1:58:41) and xylem has a prevalence of S-units (H:G:S molar ratio
of 1:45:55), both with a predominance of alkyl-aryl ether linkages
(71 and 77% of β–O–4′ linkages). The data also indicated that the
cork lignin was extensively acetylated at the γ-OH, and mainly
over G-units, contrasting with phloem and xylem lignins that
presented low levels of acetylation, and predominantly over S-
units. Therefore, it can be assumed that coniferyl acetate acts
as a monolignol in the biosynthesis of cork lignin. These results
clearly show that the lignin from cells produced by the cambium
(xylem and phloem) is quite different from the lignin from cells
produced by the phellogen (cork). These results points out that
the differences in lignin structure andmonomeric composition in
lignocellulosic materials may derive from differences in cell type,
proportion and in lignification kinetics, including secondary wall
deposition rate.

FIGURE 6 | Chromatograms of the DFRC′ degradation products from

the milled lignin preparations isolated from the different parts of Q.

suber (A) cork, (B) phloem, and (C) xylem. cG, tG, cS, and tS are the

normal cis- and trans-coniferyl (guaiacyl) and sinapyl (syringyl) alcohol

monomers (as their dipropionylated derivatives). cGac, tGac, cSac and tSac
are the natively γ-acetylated cis- and trans-coniferyl (guaiacyl) and sinapyl

(syringyl) alcohol monomers (as their phenol propionylated derivatives).
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